Proposition $f: E \mapsto E'$. f is continuous at $\Re o$. $\Leftrightarrow \Re n \to \Re o \Rightarrow f(\Re n) \Rightarrow f(\Re o)$. $proof \Rightarrow$ Let E > O. Since f is continuous at $\Re o$. $\exists f > O$. S.t. $f(B_f(\Re o)) \subset B_E(f(\Re o))$. Since $\Re n \Rightarrow \Re o$, $\exists N > O$, $n > N \Rightarrow \Re o \in B_F(\Re o)$. $\Rightarrow f(\Re n) \in B_E(f(\Re o))$

By contradiction. Assume f is not continuous at x_0 , $\exists \ 2 > 0$, s.t. $\forall \ \delta > 0$ $\exists \ x_0 \in B_{\delta}(x_0)$ but $f(x_0) \notin B_{\epsilon}(f(x_0))$. Now, we can construct a sequence x_n , s.t. $x_n \in B_{\delta}(x_0)$ s.t. $f(x_n) \notin B_{\epsilon}(f(x_0))$ then $x_n \to x_0$ but $f(x_n) \neq f(x_0)$.

Proposition $f: E \mapsto \mathbb{R}$, $g: E \mapsto \mathbb{R}$, f and g are continuous at x_0 , then

(a) ftg is continuous at
$$x_0$$

(b) f·g is continuous at x_0
(c) If $f(x_0) \neq 0$, then If is continuous at x_0

proof (c) Let
$$Z = \{x \in E : f(x) = 0\}$$
.
So $g(x) = \frac{1}{f(x)}$. $g: E - Z \mapsto \mathbb{R}$
Let $E > 0$, Since f is continuous at $x \in \mathbb{R}$.
 $\exists \delta_1 > 0$, set $x \in B_{\delta_1}(x_0) \Rightarrow f(x) \in B_{\frac{1}{2}}(f(x_0))$.
i.e., $|f(x) - f(x_0)| < |f(x_0)|$
 $\Rightarrow |f(x)| \Rightarrow |f(x_0)| - |f(x_0)|$
 $\Rightarrow |f(x_0)| \Rightarrow |f(x_0)| - |f(x_0)|$
 $\Rightarrow \frac{|f(x_0)|}{|f(x_0)| - |f(x_0)|}$
 $= \frac{|f(x_0)| - |f(x_0)|}{|f(x_0)| - |f(x_0)|}$.
 $\leq \frac{2}{|f(x_0)|} \cdot |f(x_0) - |f(x_0)|$.

Now, select δ_z s.t. $\alpha \in B_{\delta_z}(\alpha_0) \Rightarrow f(\alpha) \in Be.1f(\alpha_0)^2/2(\alpha_0)$. Then, if $\delta = \min\{\delta_1, \delta_2\}$, then $d(\alpha, \alpha_0) < \delta \Rightarrow |g(\alpha) - g(\alpha_0)| < \frac{2}{|f(\alpha_0)|^2} |f(\alpha) - f(\alpha_0)| < \frac{2}{|f(\alpha_0)|^2} \cdot \frac{2}{|f(\alpha_0)|^2} = \mathcal{E}$.

Recall: $f: E \mapsto E'$, f is continuous \Leftrightarrow $\forall u' \subset E'$ open, f(u') is open in E.

Example: E is any set, d is the discrete distance in E, $d(x,y) = \int_{0}^{\infty} 1$, if $x \neq y$, $f \in E \to E'$ is continuous.

Any point is (E, d) is open, so all sets (union of points) are open. Thus, any function $f: E \mapsto E'$ is continuous.

Proposition $f: E \mapsto E'$, $A \subset E$. A is compact. $f \bowtie continuous \implies f(A)$ is compact.

proof: Let Ui' open for all $i \in I$, s.t. $f(A) = \bigcup_{i \in I} U'_i.$

Since f is continuous, f'(U') is open $\forall i \in I$.

Since f(A) < UUi, Acf (f(A)) < U f(Ui)

Since A 1s compact, $\exists i,...,in \in I$, s.t.

AC ÜJ(Uij)

So, $f(A) \subset \bigcup_{j=1}^{n} f(f'(U_{ij})) \subset \bigcup_{j=1}^{n} U_{ij}'$.

Note, $A \subset f'(f(A))$ and $f(f(B)) \subset B$. for any function f and sets A and B.

Proposition
$$f: E \mapsto \mathbb{R}^n$$
, $\alpha_{\bullet} \in E$.
 $f(x) = (f_i(x), f_z(x), \dots, f_n(x))$
where $f_i: E \mapsto \mathbb{R}$.
 f is continuous at $\alpha_{\bullet} \iff f_i$ is continuous at α_{\bullet}
for all $i = 1, \dots, n$.

proof
$$\Rightarrow$$
) Let $E > 0$, $i \in \{1, ..., n\}$.

 $|f_i(x) - f_i(x_0)| \leq d(f(x), f(x_0)) = \sqrt{\sum_{i=1}^{n} (f_i(x) - f(x_0))^2}$

select $\delta > 0$ s.t. $f(B_{\delta}(x_0)) \subset B_{\epsilon}(f(x_0))$

then $d(x, x_0) < \delta \Rightarrow |f_i(x_0) - f_i(x_0)| < \epsilon$.

$$\Leftarrow$$
) Let $E>0$, selet δ_i , s.t. $f_i(B_{F_i}(x_0)) \subset B_{\overline{M}}(f_i(x_0))$

So,
$$d(f(x), f(x_0)) \leq \sqrt{n} \max_{1 \leq i \leq n} |f_i(x) - f(x_0)|$$

 $< \sqrt{n} \cdot \sqrt[g]{n} = \mathcal{E}$
if $d(x_1, x_0) < \delta = \min_{1 \leq i \leq n} \{\delta_i\}$.

Example of:
$$R \mapsto R$$
, $f(x) = -x^2$
(2) $f(x) = (x^2+1)$

Definition $f: E \mapsto \mathbb{R}$, f attains its maximum at $x \in E$.

Theorem: E compact, $f: E \mapsto \mathbb{R}$, f continuous then f attains its maximum.

proof Since E is compact, f is continuous f(E) is also compact.

So, f(E) is closed and bounded.

Since $f(E) \subseteq \mathbb{R}$, let a = l.u.b. f(E)Since f(E) is closed, $a \in f(E)$. Thus, $\exists x_0 \in E$, s.t. $f(x_0) = a$. So, $f(x) \leq f(x_0) = a$ $\forall x \in E$.